a2 United States Patent

Chandrasekaran et al.

US009436532B1

US 9,436,532 B1
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR
IMPLEMENTING INDEPENDENT MESSAGE
QUEUES BY SPECIFIC APPLICATIONS

(75) Inventors: Venkatesan Chandrasekaran,
Pleasanton, CA (US); Zhenqgiang Fan,
San Ramon, CA (US)

(73) Assignee: EMC Corporation, Hopkinton, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 284 days.

(21) Appl. No.: 13/331,739

(22) Filed: Dec. 20, 2011
(51) Imt.CL
GO6F 9/54
(52) US. CL
CPC oot GOG6F 9/546 (2013.01)
(58) Field of Classification Search
CPC ettt GOG6F 9/546
USPC 719/324
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
8,271,996 B1*

2003/0135542 Al*
2003/0182464 Al*

9/2012 Gould et al.coco.. 719/312
7/2003 Boudreau 709/203
9/2003 Hamilton et al. 709/314
2006/0053425 Al* 3/2006 Berkman et al. 719/313
2010/0058355 Al* 3/2010 Gernaeyc...... 719/313

OTHER PUBLICATIONS

Dickman, A., “Designing Applications with MSMQ: message queu-
ing for developers” (1998), Addison-Wesley, pp. 1-144, 281-355.*
Tulach, J., “Practical API Design: Confessions of a Java Framework
Architect” (2008), Apress, pp. 145-148.*

Monson-Haefel, R.; Chappell, D.A., “Java Message Service”
(2001), O’Reilly & Associates, pp. 1-222.*

200 206
Ms

202 g
Client 1 add

Queue

IEEE 100, “The Authoritative Dictionary of IEEE Standards
Terms,” 7 edition (2000), pp. 812.*

Cline, M., “What is ‘persistence’? What is a ‘persistent object’?”
(Jul. 4, 2012), p. 1 [retrieved from http://www.parashift.com/c++-
fag/persistence html].*

Savitch, W., “Absolute Java” (2006), Person Education, Inc., pp.
1114.*

Dickman, A., “Designing Applications with MSMQ: message queu-
ing for developers” (1998), Addison-Wesley, pp. 145-280.*
Redkar, A.; Walzer, C.; Boyd, S.; Costall, R.; Rabold, K.; Redkar,
T., “Pro MSMQ: Microsoft Message Queue Programming” (2004),
Apress, pp. 211-212.*

Langendoen, K.; Romein, J.; Bhoedjang, R.; Bal, H., “Integrating
polling, interrupts, and thread management,” (Oct. 1996), Proceed-
ings of Frontiers of Massively Parallel Computing, pp. 13-22,27-31
[retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=558057&isnumber=12155].*

Casas, E., “Interrupts” (Published May 3, 2003), pp. 1-8 [retrieved
from hitps://web.archive.org/web/200305302 13844/http://www.
ece.ubc.ca/~edc/379/1ectures/lecd .pdf].*

Gomaa, H., “A Software Design Method for Real-Time Systems”
(Sep. 1984), Communications of the ACM, vol. 27, Issue 9, pp.
938-949 [retrieved from http://dl.acm.org/citation.
cfm?id=358262].*

* cited by examiner

Primary Examiner — Brian W Wathen
(74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
Todd A. Noah

(57) ABSTRACT

A flexible message queue system that creates separate mes-
sage queues for different applications in a content server is
described. The message queue system allows for the
dynamic creation of message queues by applications on an
as-needed basis, the implementation of a message as a
persistent object with a defined schema that facilitates inter
and intra-application messaging, and the integration of mes-
sage creation with notification to streamline the message
transaction process among users, such as application threads
or applications. Embodiments include a message queue that
is implemented in a content server as a persistent object type
and that acts on messages that are an object of the type,
along with API mechanisms that allow for creating and
destroying message queues as needed.

18 Claims, 8 Drawing Sheets

206

Msg

2{)4

Y

Client 2
acknowledge !

US 9,436,532 B1

Sheet 1 of 8

Sep. 6, 2016

U.S. Patent

l "Ol4

suoljeoddy
/$90188 (]
/S8PON
30wy
Wwoi4/0}

<

P e o ws o

001

i Az ereg!
08 1~ feusslxg _E“
| oz |
|
1
— — | ssinpowy
8071 30T o BYO
Aijug ereq abeiolg
eleg ||
weubos
=T phi d
mommmwﬁ_ « sweiboid |
UOIEDIUNILLIOD uopedyddy
A L WBISAG
011 =51 2zl Buneisdp
———— serdepy 10SS800.d SIT (Wvy)
Ae(dsig
i
i Htiie
I <~Ti sog
S P VA RN
I Aedsig | >5T SIT (oY)
~ euexg | foids:
vel "5% aoepau; | I951a
| Aedsig _

9t

el

voL

4

U.S. Patent Sep. 6, 2016 Sheet 2 of 8 US 9,436,532 B1

200
2Q2 04
N\ 2
Client 1 Client 2
306
completed
process
300 ack(success)
Timeout delete

acquired deleted

ack(failure) &

with re-delivery ack(failure) &
without re-delivery.

FIG.3 **

U.S. Patent Sep. 6, 2016 Sheet 3 of 8 US 9,436,532 B1

400
ATTRIBUTE TYPE DESCRIPTION

msg_creation_time Date Time when the message is created.

msg_sender String | User who created the message.]

msg_recipient String The user to which the message is addressed.
Default is set to any so that anyone can consume
the message

msg_update_time Date Record of the time of the latest state change.

msg_state int Specifies the message state. A message may be
in one of four different states: ready, acquired, and
dead.

msg_priority int Set by message producer. A greater value means
higher priority.

msg_expiration_time Date A message is considered to be expired and thus

can be discarded if it remains in ready state by the
specified expiration time.

msg_acquired_by String This attribute is set to an id that uniguely identifies |
the user/session who acquired the message. This
attribute is valid only when the message is in the
acquired state.

msg_redelivery_count int This attribute is used for failure-recovery purposes.
When a message delivery fails it will be re-tried for
a set number of times.

msg_error_description String When a client fails in processing a message, the
acknowledge operation may take a string describes
message delivery failed. The failure message will
be recorded in this attribute to help trouble
shooting.

FIG. 4

U.S. Patent Sep. 6, 2016 Sheet 4 of 8 US 9,436,532 B1

500
ATTRIBUTE TYPE DESCRIPTION
queue_name String Message queue name. This attribute associates a
dmc_mg_config object instance with a message queue. Queue
name must be unique repository wide.
max_redeliveries integer Controls how many times a message is re-delivered in case the

message delivery fails or is timed out. The default value is 1

retain_dead_msg Boolean | Controls whether to retain undeliverable messages. Default is
false. When the client acknowledges that a message delivery
fails, the undelivered message will be set to dead state and
remains in the queue if this attribute is true. Otherwise the
message is deleted, and thus the failure s ignored.

Tétain_period integer How long to retain a dead message before purging it from the
queue.
expiration_interval | integer How long a message remains in ready state. A message will be
automatically purged if it is not acquired in the specified interval.
default_priority integer The default message priority value. The valid value range is 0-10,

and the default is 5.

delivery_timeout integer The default value is 3600 seconds (one hour). When a message
has been acquired for delivery_timeout seconds but still has not
been acknowledged, itis assumed that the consumer has
crashed or is hanging, and the message will be reverted to ready
state by message service daemon for re-delivery.

gqueue_users String Users that are aliowed to access the queue. A user in this listis
granted permissions defined in the corresponding position in
repeating attribute permissions.

permissions integer Three permissions: produce, consume, and browse are
represented as numeric values. The valid values are any of these
three values or their combinations.

FIG. 5

U.S. Patent

Sep. 6, 2016

Jo)}
o
o

|

Sheet 5 of 8

METHODS

DESCRIPTION

IDfMessage createMessage ()

Create a message.

void save (IDfMessage msg)

Save the given message to the queue.

IDiMessage acquireNext {)

Acquires the next available ready message with
highest priority and earliest creation time, and set the
message to acquired state.

iDiMessage acquireNext (String recipient)

Acquires the next available ready message with
highest priority and earliest creation time that is
addressed to the specified recipient, and set the
message to acquired state.

Collection<IDfMessage> acquireNextBatch
(int batchSize)

Acquires the next batchSize ready messages.

Collection<iDiMessage> acquireNextBatch
(String recipient, int batchSize)

Acquires the next bafchSize ready messages that
addressed to the specified recipient.

void acknowledge (IDfMessage msg, Boolean
success, String description)

Acknowledge to message service that the given
message has been processed. The second argument
indicates the message process succeeded (true) or
failed (false). In case of failure, the third argument
optionally provides a description as for why it is
failed. In case of success, the message is removed
from the queue immediately.

void acknowledge (Collection<|BfMessage>
msgs, Boolean success, String description)

Batch version of acknowledge().

Collection<IDfMessage> get (String predicate);

Returns as a collection all the messages that satisfy
the specified DQL predicate.

{DfViessage get (IDfld msgid),

Returns the message object for the given message
object ID.

Collection<|DiMessage> get (int state);

Returns all the messages in specified state.

int purge (int state)

Purges all the messages in the given state from the
queue.

int purge (IDfld msgld)

Purges the specified message from the queue.

int purgeAll()

Purges all the messages from the queue regardless
of state.

int getCount (String predicate)

Return the number of the messages that satisfy the
specified DQL predicate.

int getCount(int state)

Return the number of the messages in the given
state.

IDfMessageQueueConfig getConfig()

Return the message queue canfiguration object

FIG. 6

US 9,436,532 B1

U.S. Patent Sep. 6, 2016 Sheet 6 of 8 US 9,436,532 B1

700
METHOD DESCRIPTION
(void setMaxRedeliveries {int count) throws Set property max_redeliveries.

DfException;

void setRetainDeadMessage (boolean value) Set property retain_dead_message.

throws DfException;

void setRetainPeriod (int period) throws Set property retain_period.

DfException,

void setExpirationinterval (int interval) throws Set property expiration_interval.

DfException;)

void setDefaultPriority (int priority) throws Set property default_priority.

DfException;

void setDelivery Timeout (int timeout) throws Set property delivery_timeout.

DfException,

String getQueueName () throws DfException; Returns the value of property queue name.

int getMaxRedeliveries () throws DfException; Returns the value of property max_redeliveries.

boolean getRetainDeadMessage () throws Returns the value of property

DfException; retain_message message.

int getRetainPeriod () throws DfException; Returns the value of property retain_period.

in{ getExpirationinterval () throws DfException, | Returns the value of property expiration_interval.

int getDefaultPriority () throws DfException; Returns the value of property defauit_priority.

int getDeliveryTimeout () throws DfException; Returns the value of property delivery _timeout.

void grant {String userName, int permission) Grant the given user the specified permission.

throws DfException;

void revoke (String userName, int permission) Revoke the specified permission from the giver user.

throws DfException;

boolean canProduce (String userName, int Return <code>true</code> if the user nas permission

permission) throws DfException; to add messages to the queue, <code>false</code>
otherwise. |

boolean canConsume (String userName, int Return <code>true</code> if the user has permission

permission) throws DfException; to consume messages of the queue,
<code>false</code> otherwise.

boolean canBrowse (String userName, int Return <code>true</code> if the user has permission

permission) throws DfException; to browse the queue, <code>false</code> otherwise.

boolean isOwner (String userName, int Return <code>true</code> if the user is the owner of

ermission) throws DfExcepton; the queue, <code>false</code> otherwise.

void save() Save the configuration properties to the database.
Owner, sysadmin, or superuser privileges are required
to save message configuration object

FIG. 7

U.S. Patent

Sep. 6, 2016

oo
<o
(]

Sheet 7 of 8

METHOD

DESCRIPTION

IDfTime getCreationTime()

Returns message creation time,

IDfTime getUpdateTime()

Returns the last time the message was updated

int getState() Gets message state.
void setState(int state) Sets message state.
int getPriority() Gets message priority.

void setPriority(int value)

Sets message priority.

int getExpirationTime()

Gets message expiration time.

void setExpirationTime(IDfTime time)

Sets message expiration time.

String getAcquiredBy()

Gets the value of ‘'msg_acquired by’ property.

void setAcquiredBy(String name)

Sets ‘msg_acquired_by' property.

String getSender()

Gets message sender

Void setSender(String sender)

Sets message sender

String getRecipient()

Gets message recipient

void setRecipient(String recipient)

Sefs message recipient

int getRedeliveryCount()

Gets the value of attribute 'msg_redelivery_count’

void setRedeliveryCount(int count)

Sets the value of attribute ‘msg_redelivery_count'

String getErrorDescription()

Gets error message stored in attribute
‘msg_error_description’. This applies only when the
message delivery fails.

void setErrorDescription description)

Set a text description in attribute ‘msg_error_description’
as for why the message delivery failed.

IDfid getMessageld()

Return the message object id,

FIG. 8

US 9,436,532 B1

U.S. Patent Sep. 6, 2016 Sheet 8 of 8 US 9,436,532 B1

(o]
o

METHODS DESCRIPTION

IDfAtir createAttribute(String name, boolean Create a message queue attribute that implements
repeating, int type, int length) interface |DfAttr.

IDfAttr createAttribute(String name, boolean Used for non-string attributes.
repeating, int type)

void destroyMessageQueue(String gName) Destroys the specified the message queue.
Destroying a message queue ‘s equivalent to
dropping the corresponding type and the
dmc_mq_config object. The function will fail if the
queue is not empty. Owner, sysadmin, or superuser
privileges are required to call this method.

IDfMessageQueue getMessageQueue(String | Return message queue object representing
gName) specified message queue. Throw DiException if the
specified queue does not exist

Collection<String> Return as a list all message queue names s in the
getAliIMessageQueueNames() repository.

FIG. 9

US 9,436,532 Bl

1

METHOD AND SYSTEM FOR
IMPLEMENTING INDEPENDENT MESSAGE
QUEUES BY SPECIFIC APPLICATIONS

BACKGROUND

Message queues are software components that provide an
asynchronous communications protocol for applications and
interprocess or inter-thread communication. Message
queues provide an asynchronous communications protocol
in that the sender and receiver do not need to interact with
the message queue at the same time. In a typical message
queue implementation, a system administrator installs and
configures a commercially available message queue man-
ager and defines a named message queue. An application
registers a software routine that listens for messages placed
in the queue, and other applications may then connect to the
queue and transfer messages onto it. The queue manager
stores the messages until a receiving application connects
and calls the registered software routine. The message can
then be processed by the receiving application.

The efficient processing of messages is critical in enter-
prise software systems and cloud computing platforms that
utilize content servers for electronic record management and
management of real-time activities and information, such as
in business activity monitoring (BAM) and business process
management (BPM) solutions. In most current systems, a
single message queue, or message service, such as Java
Message service is created and used by different applica-
tions. This creates a significant message processing bottle-
neck and limits the flexibility of message processing.

There are several well-established use cases of message
queues in a content server, such as a workflow task queue,
fulltext index task queue, and business process execution
monitoring. For the workflow task queue, a queue table is
created to support workflow/router functionality. As a work-
flow executes, some tasks become ready for execution and
are entered to this queue. The designated performer of the
task acquires and executes the task, and brings the workflow
execution to the next state. For fulltext indexing, the content
server does full-text indexing asynchronously. When an
object is created, updated, or destroyed, the content server
generates a fulltext indexing request and adds the request to
a queue. The fulltext index agent retrieves the request from
the queue and calls the indexing server to update the fulltext
indexes accordingly. In the BAM context, to monitor busi-
ness process execution status, various events about business
process activities must be recorded and then extracted by the
BAM server into an integration table for further format and
aggregation processing. Fach of these use cases, among
others, present certain issues with regard to current single
message queue systems. In general, sharing a message queue
by multiple features presents performance disadvantages.
The workflow task queue is a hot spot in the system because
of frequent add/delete to/from actions in the queue. For
example, a workflow task execution causes frequent updates
to set the task state, and updates to individual tasks are done
on a one-by-one basis. The same is true for handling fulltext
indexing tasks. As the task queue size grows, queries and
updates on the queue will slow down because of various
indexes defined over the queue table. This is especially true
in some special cases, such as when many fulltext indexing
requests are generated, while the index agent is not able to
consume at a consistent rate to keep the queue at a man-
ageable size.

Another issue with the existing queuing mechanisms is
that the message schema is generally fixed. That is, message

10

20

25

30

35

40

45

50

55

60

65

2

schemas are specifically defined for specific workflows and
cannot be used for other purposes in general. Present mes-
sage queue systems also suffer from transactional limitations
in that they use polling to find available index requests,
which presents an intrinsic problem of controlling the poll-
ing interval. Frequent polling causes unnecessary system
resource consumption while overly long polling intervals
result in unacceptable latency.

The issues associated with present message queue sys-
tems are generally caused by the content servers not pro-
viding a general message queue mechanism that different
applications can use to create and manage their own queues.
Although the Java Messaging System may provide the
possibility of using message services provided by third-party
providers, using such external message services may not
meet the performance requirements of the use cases in
content server environment as listed above. In addition,
using JMS introduces additional deployment and adminis-
tration complexity. For example, transaction management
can also be problematic in that two phase commit (2PC)
protocols may be needed when using third party message
services.

What is needed, therefore, is a generic and flexible
message queue mechanism that allows applications to create
and manage their own message queues. What is further
needed is a message queue system that eliminates unneces-
sary polling by providing a notification mechanism such that
a message consumer will be blocked when there are no
pending messages available in the queue, and the blocked
message consumer is notified as soon as a message becomes
available.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the subject matter claimed will become
apparent to those skilled in the art upon reading this descrip-
tion in conjunction with the accompanying drawings, in
which like reference numerals have been used to designate
like elements, and in which:

FIG. 1 is a block diagram illustrating an example hard-
ware device in which the subject matter may be imple-
mented;

FIG. 2 illustrates the basic architecture of a flexible
messaging service using a message queue, under an embodi-
ment;

FIG. 3 is a flow diagram that illustrates a process of
message state transitions for a message queue system, under
an embodiment.

FIG. 4 is a table that lists the internal message queue
attributes, under an embodiment.

FIG. 5 is a table that lists the attributes of the message
queue configuration object, under an embodiment.

FIG. 6 is a table that lists the methods of IDfMessage-
Queue, under an example embodiment.

FIG. 7 is a table that lists the methods of the IDFMes-
sageQueueConfig, under an example embodiment.

FIG. 8 is a table that lists the methods of the IDFMessage,
under an example embodiment.

FIG. 9 is a table that lists the methods of IDFMessage-
QueueManager, under an example embodiment.

DETAILED DESCRIPTION

The subject matter presented herein provides a message
queue system that creates separate message queues for
different applications in content server and other computing
environments. The message queue system allows for the

US 9,436,532 Bl

3

dynamic creation of message queues by applications on an
as-needed basis, the implementation of a message as a
persistent object with a defined schema that facilitates inter
and intra-application messaging, and the integration of mes-
sage creation with notification to streamline the message
transaction process among users (i.e., application threads or
applications). Embodiments include a message queue that is
implemented in a content server as a persistent object type
and that acts on messages that are an object of the type,
along with API (application program interface) mechanisms
that allow for creating and destroying message queues as
needed.

Prior to describing the subject matter in detail, an exem-
plary hardware device in which the subject matter may be
implemented shall first be described. Those of ordinary skill
in the art will appreciate that the elements illustrated in FIG.
1 may vary depending on the system implementation. With
reference to FIG. 1, an exemplary system for implementing
the subject matter disclosed herein includes a hardware
device 100, including a processing unit 102, memory 104,
storage 106, data entry module 108, display adapter 110,
communication interface 112, and a bus 114 that couples
elements 104-112 to the processing unit 102.

The bus 114 may comprise any type of bus architecture.
Examples include a memory bus, a peripheral bus, a local
bus, etc. The processing unit 102 is an instruction execution
machine, apparatus, or device and may comprise a micro-
processor, a digital signal processor, a graphics processing
unit, an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), etc. The processing unit
102 may be configured to execute program instructions
stored in memory 104 and/or storage 106 and/or received via
data entry module 108.

The memory 104 may include read only memory (ROM)
116 and random access memory (RAM) 118. Memory 104
may be configured to store program instructions and data
during operation of device 100. In various embodiments,
memory 104 may include any of a variety of memory
technologies such as static random access memory (SRAM)
or dynamic RAM (DRAM), including variants such as dual
data rate synchronous DRAM (DDR SDRAM), error cor-
recting code synchronous DRAM (ECC SDRAM), or RAM-
BUS DRAM (RDRAM), for example. Memory 104 may
also include nonvolatile memory technologies such as non-
volatile flash RAM (NVRAM) or ROM. In some embodi-
ments, it is contemplated that memory 104 may include a
combination of technologies such as the foregoing, as well
as other technologies not specifically mentioned. When the
subject matter is implemented in a computer system, a basic
input/output system (BIOS) 120, containing the basic rou-
tines that help to transfer information between elements
within the computer system, such as during start-up, is
stored in ROM 116.

The storage 106 may include a flash memory data storage
device for reading from and writing to flash memory, a hard
disk drive for reading from and writing to a hard disk, a
magnetic disk drive for reading from or writing to a remov-
able magnetic disk, and/or an optical disk drive for reading
from or writing to a removable optical disk such as a CD
ROM, DVD or other optical media. The drives and their
associated computer-readable media provide nonvolatile
storage of computer readable instructions, data structures,
program modules and other data for the hardware device
100.

It is noted that the methods described herein can be
embodied in executable instructions stored in a computer
readable medium for use by or in connection with an

10

15

20

25

30

35

40

45

50

55

60

65

4

instruction execution machine, apparatus, or device, such as
a computer-based or processor-containing machine, appara-
tus, or device. It will be appreciated by those skilled in the
art that for some embodiments, other types of computer
readable media may be used which can store data that is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges,
RAM, ROM, and the like may also be used in the exemplary
operating environment. As used here, a “computer-readable
medium” can include one or more of any suitable media for
storing the executable instructions of a computer program in
one or more of an electronic, magnetic, optical, and elec-
tromagnetic format, such that the instruction execution
machine, system, apparatus, or device can read (or fetch) the
instructions from the computer readable medium and
execute the instructions for carrying out the described meth-
ods. A non-exhaustive list of conventional exemplary com-
puter readable medium includes: a portable computer dis-
kette; a RAM; a ROM; an erasable programmable read only
memory (EPROM or flash memory); optical storage
devices, including a portable compact disc (CD), a portable
digital video disc (DVD), a high definition DVD (HD-
DVD™) a BLU-RAY disc; and the like.

A number of program modules may be stored on the
storage 106, ROM 116 or RAM 118, including an operating
system 122, one or more applications programs 124, pro-
gram data 126, and other program modules 128. A user may
enter commands and information into the hardware device
100 through data entry module 108. Data entry module 108
may include mechanisms such as a keyboard, a touch screen,
a pointing device, etc. Other external input devices (not
shown) are connected to the hardware device 100 via
external data entry interface 130. By way of example and not
limitation, external input devices may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. In
some embodiments, external input devices may include
video or audio input devices such as a video camera, a still
camera, etc. Data entry module 108 may be configured to
receive input from one or more users of device 100 and to
deliver such input to processing unit 102 and/or memory 104
via bus 114.

A display 132 is also connected to the bus 114 via display
adapter 110. Display 132 may be configured to display
output of device 100 to one or more users. In some embodi-
ments, a given device such as a touch screen, for example,
may function as both data entry module 108 and display 132.
External display devices may also be connected to the bus
114 via external display interface 134. Other peripheral
output devices, not shown, such as speakers and printers,
may be connected to the hardware device 100.

The hardware device 100 may operate in a networked
environment using logical connections to one or more
remote nodes (not shown) via communication interface 112.
The remote node may be another computer, a server, a
router, a peer device or other common network node, and
typically includes many or all of the elements described
above relative to the hardware device 100. The communi-
cation interface 112 may interface with a wireless network
and/or a wired network. Examples of wireless networks
include, for example, a BLUETOOTH network, a wireless
personal area network, a wireless 802.11 local area network
(LAN), and/or wireless telephony network (e.g., a cellular,
PCS, or GSM network). Examples of wired networks
include, for example, a LAN, a fiber optic network, a wired
personal area network, a telephony network, and/or a wide
area network (WAN). Such networking environments are
commonplace in intranets, the Internet, offices, enterprise-

US 9,436,532 Bl

5

wide computer networks and the like. In some embodiments,
communication interface 112 may include logic configured
to support direct memory access (DMA) transfers between
memory 104 and other devices.

In a networked environment, program modules depicted
relative to the hardware device 100, or portions thereof, may
be stored in a remote storage device, such as, for example,
on a server. [t will be appreciated that other hardware and/or
software to establish a communications link between the
hardware device 100 and other devices may be used.

It should be understood that the arrangement of hardware
device 100 illustrated in FIG. 1 is but one possible imple-
mentation and that other arrangements are possible. It
should also be understood that the various system compo-
nents (and means) defined by the claims, described below,
and illustrated in the various block diagrams represent
logical components that are configured to perform the func-
tionality described herein. For example, one or more of these
system components (and means) can be realized, in whole or
in part, by at least some of the components illustrated in the
arrangement of hardware device 100. In addition, while at
least one of these components are implemented at least
partially as an electronic hardware component, and therefore
constitutes a machine, the other components may be imple-
mented in software, hardware, or a combination of software
and hardware. More particularly, at least one component
defined by the claims is implemented at least partially as an
electronic hardware component, such as an instruction
execution machine (e.g., a processor-based or processor-
containing machine) and/or as specialized circuits or cir-
cuitry (e.g., discrete logic gates interconnected to perform a
specialized function), such as those illustrated in FIG. 1.
Other components may be implemented in software, hard-
ware, or a combination of software and hardware. Moreover,
some or all of these other components may be combined,
some may be omitted altogether, and additional components
can be added while still achieving the functionality
described herein. Thus, the subject matter described herein
can be embodied in many different variations, and all such
variations are contemplated to be within the scope of what
is claimed.

In the description that follows, the subject matter will be
described with reference to acts and symbolic representa-
tions of operations that are performed by one or more
devices, unless indicated otherwise. As such, it will be
understood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of data in a structured form.
This manipulation transforms the data or maintains it at
locations in the memory system of the computer, which
reconfigures or otherwise alters the operation of the device
in a manner well understood by those skilled in the art. The
data structures where data is maintained are physical loca-
tions of the memory that have particular properties defined
by the format of the data. However, while the subject matter
is being described in the foregoing context, it is not meant
to be limiting as those of skill in the art will appreciate that
various of the acts and operation described hereinafter may
also be implemented in hardware.

To facilitate an understanding of the subject matter
described below, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims is performed by an electronic hardware compo-
nent. For example, it will be recognized that the various
actions can be performed by specialized circuits or circuitry,
by program instructions being executed by one or more
processors, or by a combination of both. The description

10

25

30

40

45

6

herein of any sequence of actions is not intended to imply
that the specific order described for performing that
sequence must be followed. All methods described herein
can be performed in any suitable order unless otherwise
indicated herein or otherwise clearly contradicted by con-
text.

In an embodiment, the computer system 100 includes one
or more methods of implementing a message queue mecha-
nism to allow an application to create message queues suited
for its specific need. The overall system allows for the
creation of separate queues for different applications to
avoid using the single queue for multiple purposes. Such a
system provides for the following: allowing an application
to drop a message queue when it is no longer needed;
supporting operations for adding, acquiring, updating, and
removing messages; supporting batch processing mode for
message add/acquire and other operations, maintaining mes-
sages as always persisted, such that when a message is
generated and added to a queue, it is always stored in
database and a message is removed from the queue only
after the consumer has acknowledged that the message has
been consumed. Such a system also provides that when a
message is created within an explicit user transaction, the
message persistence takes place together with user data
when commit() is invoked by the application. If a message
is created without an explicit user transaction open, message
data are committed immediately before the message add API
returns. Moreover, a message is consumed by a single client
only, so that a message will be processed (or acquired) once
only; for example, if there are ten or more queued messages
in queue Q and both client A and client B invoke Q, one of
the clients will get messages 1-5 and the other will 6-10
respectively. In this system, a message can be assigned a
priority and the message with the highest priority is always
consumed first. When there are multiple messages with the
same priority, the one that is created earliest is consumed
first. A message is removed from the queue only after the
consumer has acknowledged that the message has been
successfully processed. The message queue system supports
non-blocking message acquisition modes only because there
are no use cases for blocking message acquisition. In non-
blocking mode, acquisition operation returns immediately if
there are no ready messages available. In blocking message
acquisition mode, operation for acquiring a message may be
blocked if there are no pending messages. When a message
becomes available later, the blocked consumer is notified of
the availability of message and will continue. The system
also allows multiple sessions to add/acquire messages
to/from the same queue concurrently. Message service APIs
are made to be multithread-safe.

FIG. 2 illustrates the basic architecture of a flexible
messaging service using a message queue, under an embodi-
ment. System 200 two message clients 202 and 204 respec-
tively denoted client 1 and client 2. The clients can act as
message producers or message consumers with respect to
any single message. For the example of FIG. 2, client 1 is a
message producer and client 2 is a message consumer of
message 206. The clients exchange messages, such as mes-
sage 206 through message queue 208. The flexible messag-
ing service provides an application programming interface
to allow each respective application to define a distinct
message schema to be used by its respective clients. A
message producer (client 1) uses the message service pro-
gramming API to send (add) a message to the message queue
208. A consumer (client 2) uses the message service pro-
gramming API to receive (acquire) messages for processing.
For flexible messaging service, under an embodiment, mes-

US 9,436,532 Bl

7

sage queue 208 represents a message queue that is created
and destroyed on an as-needed basis by individual applica-
tions within a suite, or individual thread processes within an
application.

In the context of message queue system 200, a message
goes through the following steps from generation to dis-
posal: (1) the producer creates a message and adds it to the
message queue; (2) the message consumer acquires the
message; (3) the message consumer processes the message;
and (4) the message consumer acknowledges that the mes-
sage has been processed (succeed or fail). The message is
deleted from the queue if the message has been successfully
processed (succeed). The message may be retained for
trouble shooting or retry in case the message processing
failed.

As the message is processed by the system, it goes
through several state changes. FIG. 3 illustrates a process of
message state transitions for a message queue system, under
an embodiment. A message is in ready state when it is
initially created. Only messages in ready state can be
acquired. The message in ready state is set to acquired state
when it is acquired by a client. Then the message is deleted
after the client has acknowledged that the message has been
successfully processed, the message is set to dead state
otherwise. As shown in flow diagram 300, when a message
is created and added to the queue, it is in ready state 302.
When a message in ready state 302 is acquired by a client for
processing, its state is set to acquired 304. After having
finished processing the message, the message consumer
client acknowledges that the message has been successfully
processed and set its state to completed 306. A message in
completed state 306 will be removed from the queue imme-
diately, as shown in deleted state 310. If the client acknowl-
edges that the message processing has failed, and the mes-
sage has not exceeded the retry limit, the message will be
reset to ready state 302 for re-delivery. If message process-
ing has failed and the retry limit is exceeded, the message
state is set to dead 308, and it is removed from the queue, as
shown in deleted state 310. A dead message may be retained
in the queue for trouble shooting, and a failed message may
be deleted from the queue immediately as soon it is
acknowledged. Dead messages will eventually be purged
either manually or by a message service daemon process.

In an embodiment, a message consists of a number of
attributes of primitive types. Alternatively, the message may
be defined as an XML document, which is stored as pure
ASCII text. Implementing a message as an XML document
allows users to define more flexible message structure, but
certain relational database management systems may have a
limitation on the maximum size of attribute, and so imple-
mentations may need to accommodate such limits.

In an embodiment, a message queue 208 is implemented
in a content server as a persistent object type. A message
may simply be an object of the type. A message queue has
the following attributes: (1) attributes inherited from a
persistent object, (2) attributes defined by an application and
specified as API arguments when a message queue is cre-
ated; and (3) internal attributes, which are attributes that
exist for every message queuve. FIG. 4 is a table 400 that lists
the internal message queue attributes, under an embodiment.

In general, all messages added to a queue by a single
session are guaranteed to be acquired in the order they were
created, as specified by the msg_creation_time attribute. If
they are assigned different priorities, higher priority mes-
sages are always acquired first. For messages with the same
priority, the ones with the earlier creation time are acquired
first. Messages added by different sessions, however, may

10

15

20

25

30

35

40

45

50

55

60

65

8

not always be in the order of their creation time because of
concurrency or delay within individual session threads. In
overall processing, the ordering of messages consumed by a
client usually has only a rough relationship to the order in
which they were produced.

In an embodiment, the message queue is created on an
as-needed by an application. A configuration object (e.g.,
dmc_mgq_config) is used to store message queue configura-
tion properties. The message queue (mq) configuration
object is derived directly from the system object (SysObject)
and has certain inherent attributes. FIG. 5 is a table 500 that
lists the attributes of the message queue configuration
object, under an embodiment. The message queue object
instance is created when a message queue is created. The
attribute object_name (inherited from SysObject) is also set
to the name of the message queue. The configuration object
is destroyed when the message queue is dropped.

In an embodiment, the message service is implemented
through one or more APIs. The message queue mechanism
has certain functional characteristics. A message is imple-
mented as a persistent object, and it is the responsibility of
application to know which message attributes to set and set
them appropriately after a message object is created. APIs
are provided for the following tasks: create message queue
(DFC and DQL); destroy message queue (DFC and DQL);
create a message; set message attributes (which attributes to
set is the application’s responsibility; add messages to a
queue; acquire messages from a queue; update the message
state; purge messages from a queue; browse messages in a
queue; list all message queues; set message queue configu-
ration properties; and query message queue metrics.

In an embodiment, certain message queue security mea-
sures are implemented. For example, the user who creates a
message queue is the owner of the message queue. creating
message queue requires ‘create type’ privilege; thus, any
users who needs to create message queues must be granted
‘create type’ privilege. This can be done using DQL grant/
revoke statements. A message queue is virtually created as
a type without super type. Superuser privilege may be
required to create a type without super type. The owner,
sysadmin, or superuser privileges are required to adminis-
trate message queue, including updating dmec_mgq_config
object, granting/revoking queue access permissions, purging
messages from queue, deleting message queue. Certain
permissions may be defined for a message queue. These
include: (1) produce allow adding messages to the message
queue; consume—allow acquiring messages from the mes-
sage queue; browse—allow browsing messages in the mes-
sage queue. Though a user with browse permission is
allowed to query message queue, it is not allowed to add,
delete, or update messages through DQL.

In an embodiment, a message service daemon (process/
thread) is created and runs as internal session for performing
the certain house-keeping tasks apart from normal message
service operations, such as failure handling. For example, if
a client crashes or hangs after having acquired a message but
before completing processing the message, the message will
remain in acquired state forever. To handle this failure
scenario, message server will periodically check if there are
any messages that have been acquired for a long time but
have not been acknowledged. If yes, it assumes that the
message consumer has either crashed or hung, and will reset
these acquired messages to ready state. The message service
also periodically checks messages that have expired and
discards them to keep storage consumption at a minimum.
Dead messages are also periodically purged from the mes-
sage queue.

US 9,436,532 Bl

9

In an embodiment, the message queue service includes
mechanisms to track certain queue metrics, which may
include the following: the number of messages in a queue;
the average number of messages in queue since server was
last restarted; the peak number of messages in queue since
server was last restarted; the total number of messages that
have been added to queue since server was last restarted; the
total number of messages that have been deleted from queue
since server was last restarted; the total number messages
that failed; the average message waiting time in queue; the
maximum message waiting time in queue; and the number
of messages that expired since server was last restarted.
These metrics can be dynamically maintained in memory
and will reset every time the content server is restarted.

In the case that the message server is hosted by a content
server, any message service related errors, information,
warning, or trace messages will go to the content server log.
In an embodiment, the system includes a separate log for
each messages queue. The content server can then point to
the message queue specific log. When implemented in a
content server, certain event subscription mechanisms may
need to be added or changed to utilize the flexible message
queue mechanism. In general, a content server defines two
types of events: (1) notification events and (2) audit events.
In an example of a specific implementation, an event sub-
scription is represented as an object of type dmi_registry.
The two different event types are differentiated by the value
of attribute dmi_registry.is_audittrail. A Notification event is
generated as an object of type dmi_queue_item, while an
audit event is generated as an object of type dm_audittrail.

With the flexible message queue mechanism, different
message queues can be created for notification events gen-
erated by different applications, instead of putting all the
notification events in table dmi_queue_item. This requires
adding one additional attribute ‘destination_queue’ to type
dmi_registry to indicate to which message queue to deliver
a notification event. Certain changes to event subscription
APIs may also need to be made. For example, the commands
register and audit, and the related APIs for event registration
in certain interfaces (e.g., PersistentObject and AuditTrail-
Manager) should be updated accordingly to take destination
queue information into consideration. Event generation
functions in the content server must be made aware of the
destination queue of the event and deliver generated events
to their designated queues.

In general, content servers generate one event for each
subscription. When two or more users subscribe to the same
event, each user will have its own subscription and the
content server will generate one event for each of these
subscriptions. In an embodiment, this situation will remain
the same with multiple message queues for a plurality of
applications.

In an embodiment, the flexible message queue is imple-
mented as part of an enterprise content management plat-
form, such as the Documentum platform provided by EMC
Corp. These platforms provide management capabilities for
all types of content including business documents, photos,
video, medical images, e-mail, Web pages, fixed content,
XML -tagged documents, and so on. They are built around a
repository in which the content is stored securely under
compliance rules. This repository appears as a unified envi-
ronment, although content may reside on multiple servers
and physical storage devices within a distributed environ-
ment. In general, Documentum functionality is available
through a variety of user interfaces and through application
programming interfaces (APIs).

10

15

20

25

30

35

40

45

50

55

60

65

10

For an embodiment in which the flexible message queue
is implemented in a Documentum system, a Java interface,
IDfMessageQueue is defined in a DFC package for the
message queue. The class DfMessageQueue implements
IDfMessageQueue. An instance of class DfMessageQueue
uniquely indentifies a message queue in a Documentum
repository. FIG. 6 is a table 600 that lists all the methods of
IDfMessageQueue, under an example embodiment.

Certain configuration properties are defined for a message
queue. These include: queue_name, redelivery_count,
retain_dead_msg, retain_period, expiration interval,
default_priority, and delivery_timeout. Table 500 of FIG. 5
provides the description of these properties. Certain set/get
configuration properties are required to save the object to the
database. FIG. 7 is a table 700 that lists the methods of the
IDFMessageQueueConfig, under an example embodiment.

In an embodiment, the interface IDFMessage is defined

for setting/getting message properties (internal attributes) as
well as message data attributes (application defined). FI1G. 8
is a table 800 that lists the methods of the IDFMessage,
under an example embodiment. An interface IDfMessage-
QueueFactory for creating a message queue can be imple-
mented through a class DfMessageQueueFactory. An appli-
cation can call the static method DfMessageQueue-
Factory.getlnstance() to get a DfMessageQueueFactory
instance. In an example implementation, the method idf-
MessageQueue is defined as follows:
idfMessageQueue createMessageQueue (IDfSession ses-
sion, String Name, Collection <Attribute> attrs).
This method would create a message queue with the given
name, i.e. creating an object type with name
dmc_mq_<qName>. The third argument specifies all the
attributes of the message queue. ‘Create type’ privilege is
required to call this method. Creating a message queue will
also causes a dmc_mq_config object to be created implicitly.
Once the message queue is created, one can update the
configuration properties either through APIs defined in IDf-
MessageQueueConfig.

In an embodiment, an interface IDfMessageQueueMan-
ager is defined for creating attribute objects that are needed
in creating a message queue, destroying/instantiating the
message queue for the given queue name, and listing all
message queues. FIG. 9 is a table 900 that lists all the
methods of IDfMessageQueueManager, under an example
embodiment.

In an embodiment, certain. DQL (doctrine query lan-
guage) statements are provided for creating/destroying mes-
sage queue. Example statements include:

CREATE MESSAGE_QUEUE queue_name][(proper-
ty_def{,property_def})]

DROP MESSAGE_QUEUE queue_name
Executing the CREATE MESSAGE_QUEUE statement
causes an object type with name dmc_mq_<queue_name>
to be created. Creating a message queue also causes a
dmc_mgq_config object to be created with object_name set to
the queue name. Executing the DROP MESSAGE_QUEUE
statement causes type dmc_mq_<queue_name> to be
dropped and the corresponding dmc_mq_config object to be
destroyed. The following DQL statements can optionally be
supported for managing message queue security:

GRANT <privilege_list> ON MESSAGE_QUEUE
<mgq_name> TO <user_list>

REVOKE <privilege_list> ON MESSAGE_QUEUE
FROM <user_list>
Where <user_list> is docbase user or group names separated
with comma while <privilege_list> is any combination of
‘produce’, ‘consume’, and ‘browse’ separated with comma.

US 9,436,532 Bl

11

In an alternative embodiment, the flexible message queue
system can implement a message as a registered table
instead of a persistent object type to avoid including inherent
attributes from persistent type. Certain mechanisms may
need to be implemented to overcome certain drawbacks,
however, such as handling repeating attributes, and lever-
aging existing code for dealing with reading/writing mes-
sage object from/to database. Additionally, a queue admin-
istrator may be appointed to perform administrative
operations on the queue. Such a queue administrator may be
defined as an attribute of the dm_mgq-config object (as
opposed to Sysadmin or superuser). A message service
daemon can also run as the queue administrator for per-
forming message queue house keeping tasks.

Through the appropriate API interfaces, the flexible mes-
sage queue system is configured to allow different applica-
tions to create/destroy message queues on-the-fly as needed,
and allows for the creation of different queues for different
applications. An application can define a message schema to
fit its specific needs, instead of having multiple applications
share a fixed message schema. An application can define a
distinct message schema to be used by its respective pro-
cesses. The flexible message queue system also allows
message persistence to be transactional with other applica-
tion data, thus making 2PC protocols unnecessary.

The flexible message queue further allows multiple users
to add or acquire messages to and from the same queue
concurrently. Messages can be assigned a priority for hier-
archical processing, and failed messages can be retried for a
defined number of times. When a message is created with an
explicit user transaction, the message persistence takes place
together with the user data. If a message is created without
an explicit user transaction open, message data is committed
immediately. A simple access control mechanism is pro-
vided to control who is allowed to add messages to the
queue, acquire messages from the queue, and browse mes-
sages in the queue.

In general, the flexible message queue system should be
able to support a large number of concurrent sessions, such
as expected event generation rate is at least 600 events per
second per queue at peak time. There should be near zero
latency for adding/acquiring a message to/from queue, near
zero latency for most queue management operations, and
deleting messages from the queue should have minimum
impact on other queue operations.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the subject matter
(particularly in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. Recitation of ranges of values herein are merely
intended to serve as a shorthand method of referring indi-
vidually to each separate value falling within the range,
unless otherwise indicated herein, and each separate value is
incorporated into the specification as if it were individually
recited herein. Furthermore, the foregoing description is for
the purpose of illustration only, and not for the purpose of
limitation, as the scope of protection sought is defined by the
claims as set forth hereinafter together with any equivalents
thereof entitled to. The use of any and all examples, or
exemplary language (e.g., “such as”) provided herein, is
intended merely to better illustrate the subject matter and
does not pose a limitation on the scope of the subject matter
unless otherwise claimed. The use of the term “based on”
and other like phrases indicating a condition for bringing
about a result, both in the claims and in the written descrip-
tion, is not intended to foreclose any other conditions that

10

15

20

30

35

40

45

50

55

60

65

12

bring about that result. No language in the specification
should be construed as indicating any non-claimed element
as essential to the practice of the invention as claimed.

Preferred embodiments are described herein, including
the best mode known to the inventor for carrying out the
claimed subject matter. Of course, variations of those pre-
ferred embodiments will become apparent to those of ordi-
nary skill in the art upon reading the foregoing description.
The inventor expects skilled artisans to employ such varia-
tions as appropriate, and the inventor intends for the claimed
subject matter to be practiced otherwise than as specifically
described herein. Accordingly, this claimed subject matter
includes all modifications and equivalents of the subject
matter recited in the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements in all possible variations thereof is
encompassed unless otherwise indicated herein or otherwise
clearly contradicted by context.

What is claimed is:
1. A computer-implemented method for processing mes-
sages in a content server platform, comprising:
providing an application programming interface to a
content management system of the content server, the
content server including a plurality of applications and
defining two different event types, the event types
including notification events for the content server, the
notification events having subscriber applications;

creating, by the application programming interface, at
least one message queue for each of the plurality of
applications for the processing of messages among
client processes within each respective application of
the plurality of applications, wherein each message
queue is implemented in the content server as a per-
sistent object type, wherein messages in a message
queue are objects of the persistent object type corre-
sponding to the message queue, objects of a persistent
object type being maintained as always persisted, such
that, when a message is generated and added to a queue,
the message is stored in a database, the message being
removed from the message queue only after a message
consumer client process has acknowledged that the
message has been consumed, the messages of the
persistent object type only being consumed by client
processes of the application for which each message
queue was created; and

creating, by the application programming interface, dif-

ferent message queues for notification events generated
by different applications of the plurality of applications
within the content server.

2. The method of claim 1 wherein the message queue is
used by a message producer and the message consumer for
any message placed in the message queue, and wherein the
message producer uses a message service application pro-
gramming interface to add a message to the message queue
for transmission to the message consumer.

3. The method of claim 2 wherein the message consumer
uses the message service application programming interface
to acquire the message in the message queue for processing.

4. The method of claim 3 wherein the message consumer
acknowledges that the message has been processed after
acquiring the message in the message queue.

5. The method of 2 further comprising assigning a state
status to the message as it is processed through the message
queue by the message producer and message consumer.

6. The method of claim 5 wherein the message is placed
in a ready state when it is initially created by the message

US 9,436,532 Bl

13

producer, and the message state is set to an acquired state
when it is acquired by the message consumer.

7. The method of claim 6 wherein the message is set to a
completed state and eventually deleted after the message
consumer has acknowledged that the message has been
successfully processed, and wherein the message is set to a
dead state if it is not successfully processed.

8. The method of claim 7 further comprising assigning a
priority to the message to dictate an order of processing
relative to other messages transmitted through the message
queue.

9. A computer program product, comprising a non-tran-
sitory computer-readable medium having a computer-read-
able program code embodied therein, the computer-readable
program code adapted to be executed by one or more
processors to implement a method for processing messages
in a content server platform, the method comprising:

providing a first application programming interface to a
content management system of the content server, the
content server including a plurality of applications and
defining two different event types, the event types
including notification events for the content server;

creating, by the application programming interface, at
least one message queue for each of the plurality of
applications for the processing of messages among
client processes within each respective application of
the plurality of applications, wherein each message
queue is implemented in the content server as a per-
sistent object type, wherein messages in a message
queue are objects of the persistent object type corre-
sponding to the message queue, objects of a persistent
object type being maintained as always persisted, such
that, when a message is generated and added to a queue,
the message is stored in a database, the message being
removed from the message queue only after a message
consumer client process has acknowledged that the
message has been consumed, the messages of the
persistent object type only being consumed by client
processes of the application for which each message
queue was created; and

creating, by the application programming interface, dif-
ferent message queues for notification events generated
by different applications of the plurality of applications
within the content server.

10. A system for processing messages in a content server

platform, comprising:

a processor-based content management system executed
on the content server computer that is configured to
support execution of a plurality of applications and
define two different event types, the event types includ-
ing notification events for the content server, the noti-
fication events having subscriber applications;

a first application programming interface component to
the content management system of the content server,
the content server including a plurality of applications,
the application programming interface being config-
ured to:
create at least one message queue for each of the

plurality of applications for the processing of mes-
sages among client processes within each respective
application of the plurality of applications, wherein
each message queue is implemented in the content
server as a persistent object type, wherein messages
are objects of the persistent object type correspond-
ing to the message queue, objects of a persistent
object type being maintained as always persisted,
such that, when a message is generated and added to

10

15

20

25

30

35

40

45

50

55

60

65

14

a queue, the message is stored in a database, the
message being removed from the message queue
only after a message consumer client process has
acknowledged that the message has been consumed,
the messages of the persistent object type only being
consumed by client processes of the application for
which each message queue was created; and

create different message queues for notification events
generated by different applications of the plurality of
applications within the content server.

11. The system of claim 10 further comprising an inter-
face coupling a message producer to the message consumer,
each embodied as a client process, and wherein the message
queue is used by the message producer and the message
consumer for any message placed in the message queue.

12. The system of claim 11 further comprising a message
service application programming interface component,
wherein the message producer uses a message service appli-
cation program interface to add a message to the message
queue for transmission to the message consumer, and
wherein the message consumer uses the message service
application programming interface to acquire the message in
the message queue for processing.

13. The system of claim 12 wherein the message con-
sumer acknowledges that the message has been processed
after acquiring the message in the message queue.

14. The system of 12 further comprising a process com-
ponent configured to assign a state status to the message as
it is processed through the message queue by the message
producer and message consumer.

15. The system of claim 14 wherein the message is placed
in a ready state when it is initially created by the message
producer, and the message state is set to an acquired state
when it is acquired by the message consumer.

16. The system of claim 15 wherein the message is set to
a completed state and eventually deleted after the message
consumer has acknowledged that the message has been
successfully processed, and wherein the message is set to a
dead state if it is not successfully processed.

17. The system of claim 16 further comprising a priori-
tization module configured to assign a priority to the mes-
sage to dictate an order of processing relative to other
messages transmitted through the message queue.

18. A computer program product, comprising a non-
transitory computer-readable medium having a computer-
readable program code embodied therein, the computer-
readable program code adapted to be executed by one or
more processors to implement a method for processing
messages in a content server platform, the method compris-
ing:

providing a first application programming interface to a

content management system of the content server, the
content server including a plurality of applications;
creating, by the application programming interface, at
least one message queue for each of the plurality of
applications for the processing of messages among
client processes within each respective application of
the plurality of applications, wherein each message
queue is implemented in the content server as a per-
sistent object type, wherein messages in a message
queue are objects of the persistent object type corre-
sponding to the message queue, objects of a persistent
object type being maintained as always persisted, such
that, when a message is generated and added to a queue,
the message is stored in a database, the message being
removed from the message queue only after a message
consumer client process has acknowledged that the

US 9,436,532 Bl
15

message has been consumed, the messages of the
persistent object type only being consumed by client
processes of the application for which each message
queue was created; and

creating, by the application programming interface, a 5
separate content server log on the content server for
each created message queue, each separate content
server log including message service-related informa-
tion pertaining to a corresponding created message
queue. 10

